
1

This video will discuss how to read, write, and format cells in an Excel

worksheet.

The cell object needs to be retrieved in order to read, edit, or format the

contents of a cell. There are multiple ways to get the cell object for a single cell

or a range of cells.

The worksheet object’s Range method will retrieve a cell by its name.

The Cells method will retrieve a cell by its row and column.

The Range method can retrieve a group of cells by specifying a starting cell

and an ending cell separated by a colon. Note that the ending cell can be in a

different column than the starting cell.

2

Columns and rows can be retrieved formatting purposes.

The Columns method can retrieve either a single column or a group of

columns.

The Rows method can retrieve a single row or a group of rows.

3

4

Once we’ve retrieved a cell object,

We can read the Value in the cell. The value will have the same data type as

the cell in the spreadsheet. Note that reading a value from an empty cell will

return a value of None.

We can read the Formula from the cell. The formula will be returned as a

string – an empty cell will return an empty string.

The value of the cell can be set to any number or string value.

A formula can be set for a cell. The formula should entered as a string; the

contents of the string should be identical to a formula that would be typed

directly in Excel. Note that formulas in Excel always start with an equal sign.

The steps of getting the cell object and accessing the value or formula

properties are typically combined into a single statement.

This slide will show an example of how to iterate through the rows in a

spreadsheet until the final row of data is processed. The first statement gets

the worksheet object for “Sheet1”.

A for loop is used to iterate through the rows in the sheet. Note that the

xrange function is similar to the range function when used in a for loop. The

functions differ in when they create the sequence of numbers: range creates

the entire sequence and stores it in a list before the 1st iteration of the loop;

however, xrange generates a single new value with each loop iteration. xrange

is more efficient when used with for loops because it does not require the

entire sequence to be stored in a list.

The first statement in the loop creates the cell name based on the loop

iteration number. The next statement gets the value of the cell and assigns it to

a variable.

The final statement tests the variable for a null value. If the value is None, then

the loop will stop. Note that this script assumes there should be no blank cells,

in column A, before the end of the spreadsheet.

5

Python works interactively with Excel when the application is made visible (see 10a
lecture video). Changes made through Python can be seen immediately in Excel and
changes in Excel are immediately accessible by the script and without the need to
save the spreadsheet. The interactivity is convenient when developing a script;
however, the script will crash if it tries to work with a cell that is currently being edited
in Excel.

A script can use an Excel spreadsheet as a user interface in which case, the script
would need to periodically check the spreadsheet for information provided by the
user.

Periodic checks could be made by setting up an endless while loop.

In the loop, the appropriate cell in the worksheet would be checked for a non-null
value which would indicate that the user has finished specifying a value.

If the user-defined value has been received, then the loop will stop and the script can
proceed.

If a user-defined value was not found, then the script will sleep for a period of time
before continuing with the next iteration of the loop. Note that a short sleep time
should be avoided because it would increase the chances that the script will crash
from trying to check the cell while it is still being edited by the user.

6

This slide shows a scenario in which an Excel spreadsheet is used as an

improvised interface for Python.

When the script is run, it creates the spreadsheet. The spreadsheet prompts

the user for information and directs the user to enter a value of 1 in cell A2

when finished. The script periodically checks for a value of 1 in cell A2 and

when it is received, the script saves the spreadsheet, to keep a record of the

parameters, and proceeds with the analysis. The remainder of this video will

discuss how to format a worksheet.

7

Formatting properties can be applied to cell, column, or row objects. The

examples in the next few slides will use a column object.

The font name can be set through font object retrieved from the column, row,

or cell object. Notice that multiple steps are combined into a single statement –

the creation the column object, the retrieval of the font object, and the setting

of the font object’s name property.

The font can be set to italics, bold, or underline by setting the appropriate font

properties equal to True.

The font size can be specified.

8

The font color can be specified by setting the ColorIndex to the code

corresponding to the desired color.

This chart indicates the code number for each available font color.

Another way to determine the code number is to set the desired color for a cell

in Excel and then read the ColorIndex property for the cell in Python.

9

The ColumnWidth can be set for a column object.

The RowHeight can be set for a row object.

The NumberFormat can be set to control the number of digits after the

decimal. In the format string, each zero after the decimal corresponds to 1

digit.

The Orientation of the cell value(s) can be changed to vertical as shown in

these examples.

10

The HorizontalAlignment of cells, rows, or columns can be set to right, left,

or center justification.

The VerticalAlignment can be set to top, center, or bottom alignment.

The WrapText property allows the text in a cell to wrap around to multiple

lines.

The MergeCells property will combine the cells in the specified range into one

cell.

11

The background color of cells, rows, and columns can be set through the

Interior object’s Color property.

The code number that corresponds to the available colors are indicated in the

table.

An alternate method to get the code number is to set the cell color in Excel

and then use Python to read the Interior object’s color property for the cell.

12

This slide will show an example script that formats a worksheet – the result of

the scrip will be shown on the following slide. The first statement sets the

column widths to 20 for columns A, B, and C.

The next set of statements sets the font properties for one or more cells:

- the size is set to 12 for cells A4 through C4,

- the style is set to italics for cells A4 through C4

- The style is set to bold for cells A7 through C7

- The font color code is set to 3, for cell A1, which corresponds to a red.

The final set of statements sets the colors of the cells.

- The color code of cell A2 is set to a yellow color (i.e. code 65535)

- The color code of cells A8 through C18 is set to a light green color (i.e.

13434828)

13

This slide shows the results from the example script on the previous slide. The

unformatted spreadsheet was used as the input to the script.

The script formatted the spreadsheet as shown here.

14

